STUDY GUIDE FOR AREA, PERIMETER, VOLUME AND SURFACE AREA

FOR: MRS. GOODHUE'S CLASS BY: MRS. CAMUTO

PERIMETER

- PERIMETER -

$>$ This is the distance around the outside of a figure.
$>$ To find this, you simply ADD UP ALL THE SIDES!

$P=5+5+5+5+5+5+5$
$\mathrm{P}=30 \mathrm{~cm}$.

$$
\begin{aligned}
& \mathrm{P}=15+15+25+25 \\
& \mathrm{P}=80 \mathrm{ft} .
\end{aligned}
$$

AREA

(label is always squared / raised to the $2^{\text {nd }}$. power

- AREA -
- This is the distance covering the ENTIRE INSIDE AREA OF A SHAPE
- EACH SHAPE has it's own formula for finding area.

10 in .
rectangle
$\mathrm{A}=\mathrm{b} \times \mathrm{h}$
$\mathrm{A}=10 \times 5$
$\mathrm{A}=50 \mathrm{sq} . \mathrm{in}$.

ALL FOUR OF THESE FIGURES USE

Area $=$ base \mathbf{X} height or $\mathbf{A}=\mathbf{b} h$

square

AREA OF A TRAPEZOID

- ALL THREE of these are TRAPOZOIDS because they have ONE SET of PARALLEL SIDES!

$$
\begin{aligned}
& A=1 / 2 h(b 1+b 2) \\
& A=1 / 2 \quad 8(20+10) \\
& A=4(30) \\
& A=120 \text { sq. m. }
\end{aligned}
$$

- The formula is:

AREA OF A TRIANGLE

- AREA -

The formula for finding the area of a triangle is:

$$
\begin{aligned}
& \mathrm{A}=1 / 2 \mathrm{~b} \times \mathrm{h} \\
& \mathrm{~A}=1 / 2(15 \times 10) \\
& \mathrm{A}=1 / 2(150) \\
& \mathrm{A}=75 \mathrm{sq} . \mathrm{cm} .
\end{aligned}
$$

REMEMBER: to find $\mathfrak{a} 1 / 2$ of a number all you need to do is divide by 2.

PARTS OF A CIRCLE!

IMPORTANT FACTS ABOUT CIRCLES -

DIAMETER

DIAMETER -

this is the distance ALL the way across a circle.

RADIUS -

This is $1 / 2$ the distance across a circle.
You can find this by dividing the diameter by 2.

$$
\mathrm{Pi}=3.14
$$

RADIUS $=$
$1 / 2$ the diameter
KNOW THESE FORMULAS -

$$
\text { CIRCUMFRANCE }-\mathrm{C}=\underset{2}{\mathrm{Pi} \mathrm{X} \mathrm{~d}}
$$

$$
\text { AREA - } \mathrm{A}=\mathrm{Pi} \mathrm{X} \text { r }
$$

HOW TO FIND CIRCUMFRANCE AND AREA OF A CIRCLE!

Finding the circumference -
$\mathrm{C}=\mathrm{Pi} \mathrm{X} \mathrm{d}$
$\mathrm{C}=3.14 \mathrm{X} 8$
$\mathrm{C}=25.12 \mathrm{~mm}$

Finding the area -
$\mathrm{A}=\mathrm{Pi} \mathrm{Xr}$ squared
$\mathrm{A}=3.14 \mathrm{X} 8 \mathrm{X} 8$
$\mathrm{A}=3.14 \mathrm{X} 64$
$A=200.96$ sq. mm.

DILATIONS

- This is when a picture is made either larger or smaller.
- Number bigger than $1-$ the figure will be larger.
- Number smaller than $1-$ the figure will be smaller.

TO FIND THE SIZE OF THE NEW FIGURE, MULTIPY EACH SIDE BY THE GIVEN SCALE FACTOR.

$$
\text { new } \text { side }=12 \mathrm{~mm}
$$

Can you find the length of the rest of the sides?

SURFACE AREA

5 cm

- This is where you find the AREA of EACH face (side) of a figure and then ADD them all together.

VOLUME

(the capital B stands for the area of the base)

$$
\left.\begin{array}{ll}
\mathrm{V}=\mathrm{B} \mathrm{~h} \longrightarrow \mathrm{~B}=\mathrm{Pi} \mathrm{X} \mathrm{r} \mathrm{squared} \\
\mathrm{~B}=3.14 \times 3 \times 3
\end{array}\right] \begin{aligned}
& \mathrm{B}=3.14 \times 9 \\
& \mathrm{~V}=28.26 \mathrm{X} \mathrm{2} \\
& \mathrm{~V}=56.52 \text { cubic in. } \quad \mathrm{B}=28.26 \text { sq. in. }
\end{aligned}
$$

- Use the formula

$$
\mathrm{V}=\mathrm{B} \mathrm{X} \mathrm{~h}
$$

B is the AREA of the base.

You need to find area of the base first.

